Q.P. 0	Code: 19ME0305	19	
Reg.	No:		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PU' (AUTONOMOUS)	ITUR	
	B.Tech II Year II Semester Regular Examinations July-2021		
	ENGINEERING THERMODYNAMICS (Machanical Engineering)	a di da	
	(Wiechamear Engmeering)	1 (0	
Time:	3 hours Max. Ma	arks: 60	0.
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I		
1	a Define the following terms	L1	6M
	i) System ii) Boundary iii) Surroundings		
	b What do mean by property? Distinguish between intensive and extensive property.	L1	6M
	OR		
2	a List the difference between a closed system and an open system	L4	6M
	b Compare the cyclic process and non-cyclic process.	L1	6M
3	a In an internal combustion engine, during the compression stroke the heat rejected to the cooling water is 50 kJ/kg and the work input is 100 kJ/kg. Calculate the change in internal energy of the working fluid stating whether it is a gain or loss.	L5	6M
	b Define first law of thermodynamics. Justify that internal energy is a property of the system.	L1	6M
	OR		
4	 a In an air motor cylinder the compressed air has an internal energy of 450 kJ/kg at the beginning of the expansion and an internal energy of 220 kJ/kg after expansion. If the work done by the air during the expansion is 120 kJ/kg, calculate the heat flow to and from the cylinder. 	L3	6M
	b What is Steady Flow Process? Derive Steady Flow Energy Equation (SFEE) for an open system.UNIT-III	L3	6M
5	a State and Explain Dalton law of partial pressure.	L2	6M
	b Develop the expression of work transfer for an ideal gas in reversible	L3	6M
	isothermal process.		
	OR		
6	An insulated cylinder of volume capacity 4 m3 contains 20 kg of nitrogen. Paddle work is done on the gas by stirring it till the pressure in the vessel gets increased from 4 bar to 8 bar. Determine : (i) Change in internal energy, (ii) Work done,	L5	12M
	(iii) Heat transferred, and	i.	
	(iv) Change in entropy.		
	Take for nitrogen : $c_p = 1.04 \text{ kJ/kg K}$, and $c_v = 0.7432 \text{ kJ/kg K}$.		

Page 1 of 2

Q.P. Code: 19ME0305

UNIT-IV

7	a Develop an expression for Carnot Cycle and efficiency of cycle.	L3	6M
	b A carnot engine working between 400° C and 40° C produce 130 KJ of work. Determine i) The thermal efficiency. ii) the heat added iii) The entropy	L3	6M
	Changes during the near rejection process.		
	ÖK		
8	Differentiate between Otto cycle, diesel cycle and dual combustion cycle.	L4	12M
	UNIT-V		
9	Describe Simple steam power cycle with neat sketches.	L1	12M
	OR		
10	A steam power plant operates on a theoretical reheat cycle. Steam from boiler	L5	12M
	at 150 bar, 550°C expands through the high pressure turbine. It is reheated at		
	a constant pressure of 40 bar to 550°C and expands through the low pressure		
	turbine to a condenser at 0.1 bar. Draw T-s and h-s diagrams		

Find : (i) Quality of steam at turbine exhaust ; (ii) Cycle efficiency ;

(iii) Steam rate in kg/kWh.

*** END ***